\(\int (a+a \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx\) [294]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 75 \[ \int (a+a \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {2 a \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d} \]

[Out]

2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec
(d*x+c)^(1/2)/d+2*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(
d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3317, 3872, 3856, 2719, 2720} \[ \int (a+a \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d} \]

[In]

Int[(a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*Sqrt[Cos[c + d*x]]*EllipticF[(c
 + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {a+a \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx \\ & = a \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+a \int \sqrt {\sec (c+d x)} \, dx \\ & = \left (a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\left (a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {2 a \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.59 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.88 \[ \int (a+a \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=-\frac {2 i a \left (1+e^{2 i (c+d x)}-2 \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+2 e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{d \left (1+e^{2 i (c+d x)}\right ) \sqrt {\sec (c+d x)}} \]

[In]

Integrate[(a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]

[Out]

((-2*I)*a*(1 + E^((2*I)*(c + d*x)) - 2*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*
I)*(c + d*x))] + 2*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c
 + d*x))]))/(d*(1 + E^((2*I)*(c + d*x)))*Sqrt[Sec[c + d*x]])

Maple [A] (verified)

Time = 3.63 (sec) , antiderivative size = 150, normalized size of antiderivative = 2.00

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(150\)
parts \(-\frac {2 a \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}+\frac {2 a \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(268\)
risch \(-\frac {i \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) a \sqrt {2}\, \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, {\mathrm e}^{-i \left (d x +c \right )}}{d}-\frac {i \left (\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, F\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )}{\sqrt {{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}}}-\frac {2 \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}{\sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) {\mathrm e}^{i \left (d x +c \right )}}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i E\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i F\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}}}\right ) a \sqrt {2}\, \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) {\mathrm e}^{i \left (d x +c \right )}}\, {\mathrm e}^{-i \left (d x +c \right )}}{d}\) \(407\)

[In]

int((a+cos(d*x+c)*a)*sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*
c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-Elli
pticE(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.43 \[ \int (a+a \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {-i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - i \, \sqrt {2} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{d} \]

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*a*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*a*weierstrassPInverse(-4,
0, cos(d*x + c) - I*sin(d*x + c)) + I*sqrt(2)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c)
 + I*sin(d*x + c))) - I*sqrt(2)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x +
 c))))/d

Sympy [F]

\[ \int (a+a \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=a \left (\int \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int \sqrt {\sec {\left (c + d x \right )}}\, dx\right ) \]

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)**(1/2),x)

[Out]

a*(Integral(cos(c + d*x)*sqrt(sec(c + d*x)), x) + Integral(sqrt(sec(c + d*x)), x))

Maxima [F]

\[ \int (a+a \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int (a+a \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int \sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (a+a\,\cos \left (c+d\,x\right )\right ) \,d x \]

[In]

int((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x)),x)

[Out]

int((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x)), x)